1,611 research outputs found

    Entanglement distribution maximization over one-side Gaussian noisy channel

    Full text link
    The optimization of entanglement evolution for two-mode Gaussian pure states under one-side Gaussian map is studied. Even there isn't complete information about the one-side Gaussian noisy channel, one can still maximize the entanglement distribution by testing the channel with only two specific states

    Enhanced squeezing with parity kicks

    Full text link
    Using exponential quadratic operators, we present a general framework for studying the exact dynamics of system-bath interaction in which the Hamiltonian is described by the quadratic form of bosonic operators. To demonstrate the versatility of the approach, we study how the environment affects the squeezing of quadrature components of the system. We further propose that the squeezing can be enhanced when parity kicks are applied to the system.Comment: 4 pages, 2 figure

    Local observables for entanglement witnesses

    Full text link
    We present an explicit construction of entanglement witnesses for depolarized states in arbitrary finite dimension. For infinite dimension we generalize the construction to twin-beams perturbed by Gaussian noises in the phase and in the amplitude of the field. We show that entanglement detection for all these families of states requires only three local measurements. The explicit form of the corresponding set of local observables (quorom) needed for entanglement witness is derived.Comment: minor corrections, title change

    Quantum gates with topological phases

    Full text link
    We investigate two models for performing topological quantum gates with the Aharonov-Bohm (AB) and Aharonov-Casher (AC) effects. Topological one- and two-qubit Abelian phases can be enacted with the AB effect using charge qubits, whereas the AC effect can be used to perform all single-qubit gates (Abelian and non-Abelian) for spin qubits. Possible experimental setups suitable for a solid state implementation are briefly discussed.Comment: 2 figures, RevTex

    A Unified Quantum NOT Gate

    Full text link
    We study the feasibility of implementing a quantum NOT gate (approximate) when the quantum state lies between two latitudes on the Bloch's sphere and present an analytical formula for the optimized 1-to-MM quantum NOT gate. Our result generalizes previous results concerning quantum NOT gate for a quantum state distributed uniformly on the whole Bloch sphere as well as the phase covariant quantum state. We have also shown that such 1-to-MM optimized NOT gate can be implemented using a sequential generation scheme via matrix product states (MPS)

    Generalization of geometric phase to completely positive maps

    Get PDF
    We generalize the notion of relative phase to completely positive maps with known unitary representation, based on interferometry. Parallel transport conditions that define the geometric phase for such maps are introduced. The interference effect is embodied in a set of interference patterns defined by flipping the environment state in one of the two paths. We show for the qubit that this structure gives rise to interesting additional information about the geometry of the evolution defined by the CP map.Comment: Minor revision. 2 authors added. 4 pages, 2 figures, RevTex

    Entanglement production in a chaotic quantum dot

    Get PDF
    It has recently been shown theoretically that elastic scattering in the Fermi sea produces quantum mechanically entangled states. The mechanism is similar to entanglement by a beam splitter in optics, but a key distinction is that the electronic mechanism works even if the source is in local thermal equilibrium. An experimental realization was proposed using tunneling between two edge channels in a strong magnetic field. Here we investigate a low-magnetic field alternative, using multiple scattering in a quantum dot. Two pairs of single-channel point contacts define a pair of qubits. If the scattering is chaotic, a universal statistical description of the entanglement production (quantified by the concurrence) is possible. The mean concurrence turns out to be almost independent on whether time-reversal symmetry is broken or not. We show how the concurrence can be extracted from a Bell inequality using low-frequency noise measurements, without requiring the tunneling assumption of earlier work.Comment: 12 pages, 2 figures, Kluwer style file include

    Holonomic quantum gates: A semiconductor-based implementation

    Get PDF
    We propose an implementation of holonomic (geometrical) quantum gates by means of semiconductor nanostructures. Our quantum hardware consists of semiconductor macroatoms driven by sequences of ultrafast laser pulses ({\it all optical control}). Our logical bits are Coulomb-correlated electron-hole pairs (excitons) in a four-level scheme selectively addressed by laser pulses with different polarization. A universal set of single and two-qubit gates is generated by adiabatic change of the Rabi frequencies of the lasers and by exploiting the dipole coupling between excitons.Comment: 10 Pages LaTeX, 10 Figures include

    Production and detection of three-qubit entanglement in the Fermi sea

    Full text link
    Building on a previous proposal for the entanglement of electron-hole pairs in the Fermi sea, we show how 3 qubits can be entangled without using electron-electron interactions. As in the 2-qubit case, this electronic scheme works even if the sources are in (local) thermal equilibrium -- in contrast to the photonic analogue. The 3 qubits are represented by 4 edge-channel excitations in the quantum Hall effect (2 hole excitations plus 2 electron excitations with identical channel index). The entangler consists of an adiabatic point contact flanked by a pair of tunneling point contacts. The irreducible 3-qubit entanglement is characterized by the tangle, which is expressed in terms of the transmission matrices of the tunneling point contacts. The maximally entangled Greenberger-Horne-Zeilinger (GHZ) state is obtained for channel-independent tunnel probabilities. We show how low-frequency noise measurements can be used to determine an upper and lower bound to the tangle. The bounds become tighter the closer the electron-hole state is to the GHZ state.Comment: 8 pages including 4 figures; [2017: fixed broken postscript figures

    Effect of noise on geometric logic gates for quantum computation

    Full text link
    We introduce the non-adiabatic, or Aharonov-Anandan, geometric phase as a tool for quantum computation and show how it could be implemented with superconducting charge qubits. While it may circumvent many of the drawbacks related to the adiabatic (Berry) version of geometric gates, we show that the effect of fluctuations of the control parameters on non-adiabatic phase gates is more severe than for the standard dynamic gates. Similarly, fluctuations also affect to a greater extent quantum gates that use the Berry phase instead of the dynamic phase.Comment: 8 pages, 4 figures; published versio
    corecore